

CSCI 3210: Computational Game Theory

Intro to Computational Social Choice (COMSOC) and Voting Handbook of COMSOC Ch 1, 2

Mohammad T. Irfan

http://mtirfan.com/CSCI-3210

Social choice theory

Individual preferences → collective choice

Jean-Charles de Borda 1770

Marquis de Condorcet 1785

Pierre-Simon Laplace 1795

Charles Dodgson (Lewis Carroll) 1876

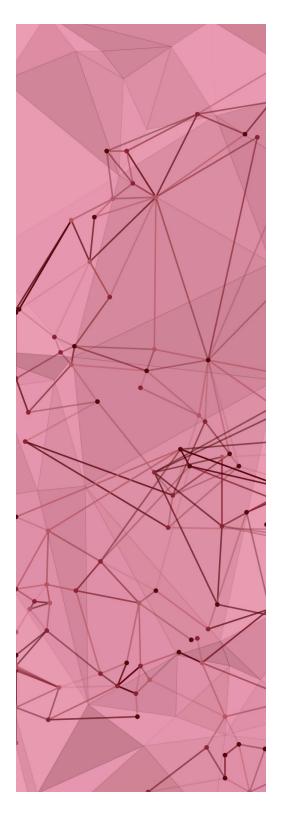
Kenneth Arrow 1951

Lloyd Shapley 1962

COMSOC Handbook:

"It is this interdisciplinary view [CS and social choice theory] on collective decision making that defines computational social choice as a field."

Research on COMSOC


- CS -> social choice theory
 - Design and analysis of algorithms for classical/preexisting SOC problems
 - Revisit old problems from scratch
 - Revival of social choice theory

Research on COMSOC

- Social choice theory -> CS applications
 - Recommendation for a group restaurant/vacation
 - Information retrieval aggregating information
 - Crowdsourcing Mechanical Turk

Examples

- Elections
 - Social choice: winner
- Markets
 - Social choice: re-allocation of goods and money
- Auctions
 - Social choice: winner
- EPA regulations
 - Social choice: made by the government

Voting

Ch 2 of Computational Soc Choice

First example: plurality vote

- Each voter marks one candidate
- The candidate with most votes wins
- Other names of plurality:
 - First-past-the-post
 - Choose-one
 - First-preference plurality

Example: plurality vote (vs. majority)

2025 New York City mayoral election

Got 50%+, but it was not needed under plurality

Critique of plurality

- Winner can be vastly unpopular (may get well below 50% votes) – numerous examples
- Vote splitting by a "spoiler" (candidate who loses at the end) – numerous examples
- Susceptible to election control by deleting candidates
 - Roman Senator Pliny the Younger's note (year 105)
 - Prisoners could be (A) acquitted, (B) banished, or (C) condemned to death
 - A had most support in Senate, but deletion of C led to B as the outcome

Ranked ballots

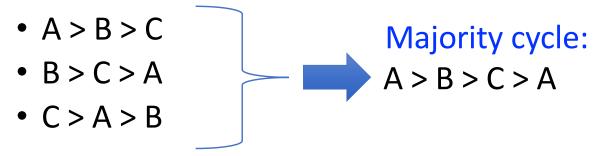
- Each voter ranks the candidates
- How to aggregate the rankings?
- Single round
 - Plurality: most frequent top choice candidate wins
 - Condorcet, Copeland, Borda, ...
- Multiple rounds
 - Ranked-choice voting and variants

Formalization: Social choice function (SCF)

- Ballot of a voter: linear ordering of candidates (no ties allowed)
- Profile: consists of a ballot for each voter
- *SCF:* Profile → Winner(s)

Social welfare function (SWF)

- SWF: Profile → Weak ranking
- SCF vs. SWF
 - Some voting methods don't produce a ranking, just winner(s)
 - SWF may not even exist, e.g., in majority rules (Condorcet paradox)


Condorcet winner

 The candidate that beats every other candidate in head-to-head.

- Example:
- 3 candidates, 3 voters with preferences
- Preferences of the voters:
 - A > B > C
 - B > A > C
 - A > C > B
- Condorcet winner: A
 - A beats B (2-1) and A beats C (3-0)

Condorcet paradox

- 3 candidates, 3 voters with preferences
- Preferences of the voters:

- A beats B (2-1 vote) and B beats C (2-1)
- But C beats A (2-1)!
- No Condorcet winner

Condorcet paradox

The majority voting outcome may be contradictory (fails transitivity) while individual votes are rational.

Copeland rule

Copeland score of candidate A

- = # of candidates that A beats head-to-head # of candidates that beat A head-to-head
- Pro: Produces an aggregate ranking by scores (unlike plurality)
- Con: Ignores the margin of head-to-head wins and losses

Example: Copeland rule

102 votes	101 votes	100 votes
В	В	С
А	С	Α
С	А	В

B beats A in 102+101 to 100 votes C beats A in 101+100 to 102 votes B beats C in 102+101 to 100 votes

A's score =
$$0 - 2 = -2$$

B's score = $2 - 0 = 2$
C's score = $1 - 1 = 0$
Winner(s) = {B}

More sophisticated method: Borda count

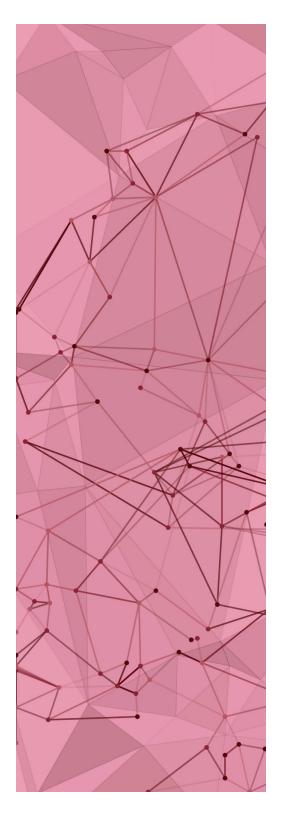
- n candidates
- Each candidate gets n i points for every voter who ranks them in the i-th place
- The candidate with the most points wins

Example: Borda count

Voter 1	Voter 2	Voter 3	
A	В	В	
В	С	А	
С	А	С	

Borda scores:

A:
$$2 + 0 + 1 = 3$$


B:
$$1 + 2 + 2 = 5$$

$$C: 0 + 1 + 0 = 1$$

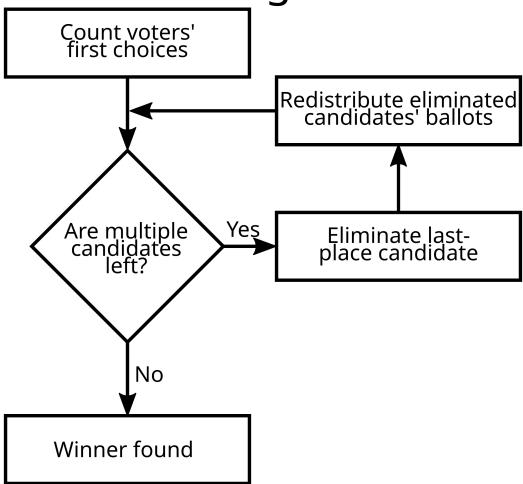
Winner(s) =
$$\{B\}$$

Borda manipulation/ strategic or tactical voting

- Jean-Charles de Borda: "My scheme is intended for only honest men."
- Strategic voting
 - A voter's actual preference: A > B > C
 - Knows A will not win
 - Will fake B as his first choice

Ranked-Choice Voting (RCV)

Ranked-choice voting (RCV)


- Multiple rounds
 - Instant run-off voting (IRV): single winner
 - Single transferable voting (STV): multiple winners
 - Many variants: E.g., which scoring rule?

"In the early 2020s, the use of contingent ranked votes saw a comeback in the United States. STV, for a time used only in Cambridge, Massachusetts, was adopted by Portland, Maine, and several other American cities beginning in 2022.

Single-winner ranked voting (specifically instant-runoff voting) is used to elect politicians in the states of Maine and Alaska. In November 2016, the voters of Maine narrowly passed Question 5, approving ranked-choice voting (instant-runoff voting) for all elections. This was first put to use in 2018, marking the inaugural use of ranked votes in a statewide election in the United States."

https://en.wikipedia.org/wiki/Ranked voting

IRV counting flowchart

Example: IRV

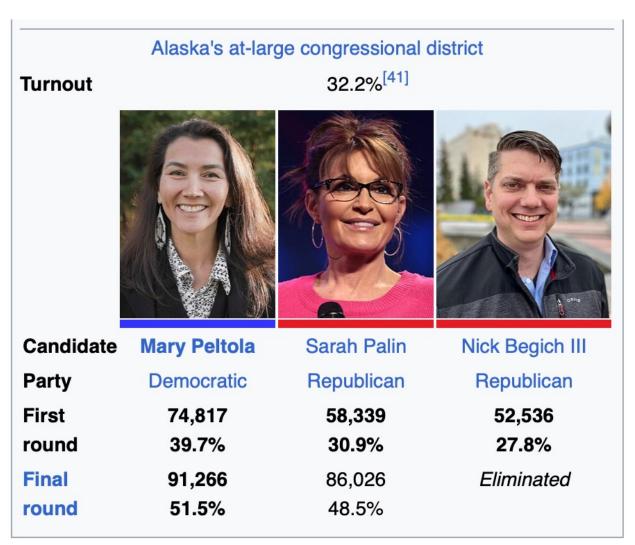
https://vote.nyc/RankedChoiceVoting

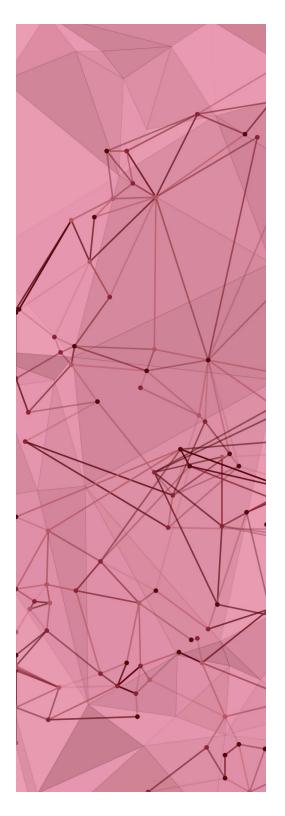
	Round 1		Round 2		Round 3	
Candidate +	Votes +	% \$	Votes +	% \$	Votes +	% \$
Zohran Mamdani	469,642	43.82%	469,755	43.86%	573,169	56.39%
Andrew Cuomo	387,137	36.12%	387,377	36.17%	443,229	43.61%
Brad Lander	120,634	11.26%	120,707	11.27%	Eliminated	
Adrienne Adams	44,192	4.12%	44,359	4.14%	Eliminated	
Scott Stringer	17,820	1.66%	17,894	1.67%	Eliminated	
Zellnor Myrie	10,593	0.99%	10,648	0.99%	Eliminated	
Whitney Tilson	8,443	0.79%	8,525	0.80%	Eliminated	
Michael Blake	4,366	0.41%	4,389	0.41%	Eliminated	
Jessica Ramos	4,273	0.40%	4,294	0.40%	Eliminated	
Paperboy Prince	1,560	0.15%	1,628	0.15%	Eliminated	
Selma Bartholomew	1,489	0.14%	1,505	0.14%	Eliminated	
Write-ins	1,581	0.15%	Eliminated			
Active votes	1,071,730	100.00%	1,071,081	99.94%	1,016,398	94.84%
Exhausted ballots	_		649	0.06%	55,332	5.16%

Non-viable: eliminated at once

Source: New York City Board of Elections^[66]

Two-Round System (2RS)


- Origin: France, most common in the world
 - French presidential election
 - US non-partisan primaries in California, Washington, Louisiana, and Georgia
 - Partisan primaries in other states
- First round: Each voter chooses one candidate
 - Top two candidates qualify for the second round
- Second round: Each voter chooses one of the two


Center squeeze

- Known issue with ranked-choice and two-round systems
- Majority preferred candidate (in head-to-head) may lose to extreme alternatives or spoiler candidates (those losing in the end)

2022 Alaska Special Election:

- Begich is the "Condorcet winner": wins head-to-head against both Peltola and Palin.
- But he gets eliminated in the first round of IRV.
- Spoiler: Palin

Is there a perfect voting method?

Desirable properties/axioms

- 1. Unanimity: if all voters prefer A to B, then the social preference must be the same
- 2. No dictatorship: No one voter dictates the social preference
- 3. Independent of irrelevant alternatives (IIA):
 Social preference between A & B depends only on the voters' preferences between A & B, not on other *alternatives* (meaning choices)

Example: IIA violation

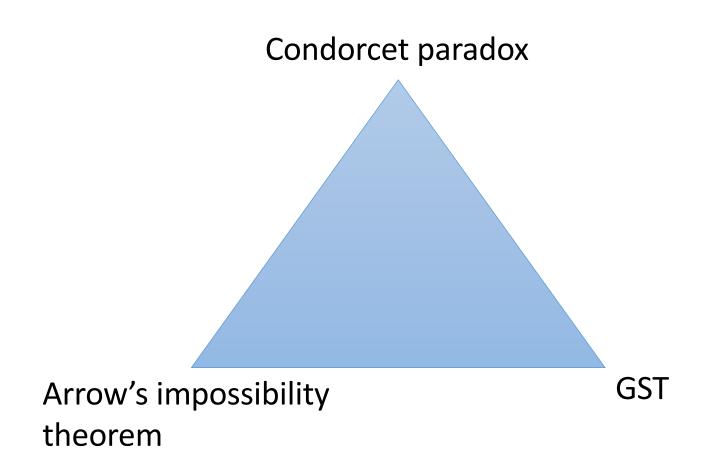
Plurality rule violates IIA

X: X-men, S: Superman, B: Batman

Without X-Men	With X-Men
5: S > B	5: X > S > B
4: B > S	4: B > S > X
1: S > B	1: S > B > X
S > B	X > B > S
S beats B (6-4)	B beats S (4-1)

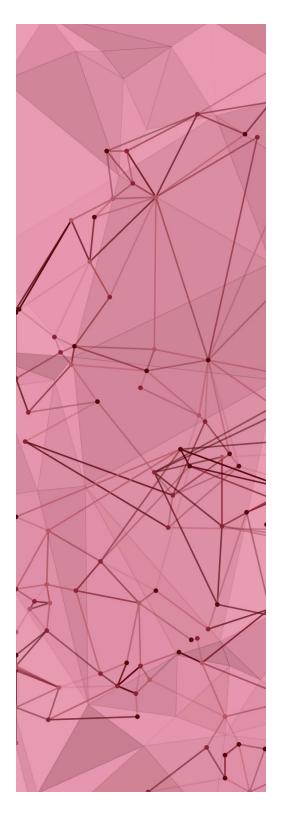
Arrow's impossibility theorem

For 3 or more candidates, there is no voting method that satisfies all 3 desirable properties. Kenneth Arrow, 1950 (Nobel Prize, 1972)


Revived voting theory 150 years after its golden age.

Gibbard-Satterthwaite Theorem (GST)

Other than dictatorship, every ranking-based voting method is susceptible to manipulation (i.e., not *strategyproof*).


Gibbard, 1973 and Satterthwaite, 1975

Voting theory triad

Main take-aways

- Avoid love at first sight with any voting method
- Need to critically examine the pros and cons of a voting system
 - Trade-offs among axioms are common
 - "Fair voting system": how and at what cost?
- Strategyproof voting is important, but how hard is manipulation computationally?

Axiomatic approach to evaluating voting methods

Axioms: Precisely defined properties of voting rules, often normative

Axioms I

Bare minimum
Absolutely required

Axioms II

Higher demands
Tradeoffs unavoidable
Controversial

Axioms III

Strongest demands: strategyproofness, IIA Impossibility thms apply

Axioms I

- Anonymous: Voters are treated the same: no voter has more weight than another
- Neutral: All candidates are treated equally: swapping two candidates in everybody's ballot results in swapping them in the outcome
- Pareto optimality: The voting method never declares X as a winner when every voter prefers some other candidate to X

Which methods satisfy Axioms 1?

- Plurality
- Copeland
- Borda
- Numerous variants
- Multi-round versions of these: IRV, STV, etc.

Axioms II

- Reinforcement:
 - Let's say candidate X wins in Brunswick and Portland separately
 - Combine the votes of Brunswick and Portland
 X should still be the winner
- Sampling of results:
 - Condorcet consistent methods (which declare Condorcet winner if there exists one) don't satisfy reinforcement for 3 or more candidates.

Axioms III

- Strategyproofness
- IIA
- Impossibility theorems
 - Can debate the importance of IIA in democracy

Approval Voting Vote for as many candidates as you like.

Andre

Blake

Carmen

David

Ella

The candidate with the most votes wins.

Approval voting: SCF

- Does not have an SWF or SCF: ballots are not ranked
- Construct an SCF
 - Two indifference classes for a ballot: marked & unmarked
 - Indifference among all marked candidates
 - Marked candidates are preferred over unmarked
- We can now apply Borda and other voting rules

Pros: approval voting

- Simplicity
- Addresses the #1 flaw of plurality voting: vote splitting between same-party candidates
- Improves the probability that the winner will be supported by the majority of citizens
- Relatively resistant to strategic manipulation

Cons: approval voting

- Understanding the meaning: where to draw the line of approval?
- Restricts the expressiveness of a ballot
- Violates "one person, one vote"
- Unfair: gives more influence to voters who approve more candidates